Pole Dynamics for Elliptic Solutions of the Korteweg-deVries Equation
نویسنده
چکیده
The real, nonsingular elliptic solutions of the Korteweg-deVries equation are studied through the time dynamics of their poles in the complex plane. The dynamics of these poles is governed by a dynamical system with a constraint. This constraint is shown to be solvable for any finite number of poles located in the fundamental domain of the elliptic function, often in many different ways. Special consideration is given to those elliptic solutions that have a real nonsingular soliton limit.
منابع مشابه
Some traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملThe tanh method for solutions of the nonlinear modied Korteweg de Vries equation
In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations
متن کاملAnalytical and Numerical Studies of Weakly Nonlocal Solitary Waves of the Rotation-Modified Korteweg-deVries Equation
A century ago, the Korteweg-deVries (KdV) equation was derived as a model for weakly nonlinear long waves propagating down a channel when cross-channel and depth variations are sufficiently weak. In this article, we study the steadily-translating coherent structures of a generalization of this equation, the Rotation-Modified Korteweg-deVries equation, which applies when Coriolis forces are sign...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملSolitary Waves and Compactons in a class of Generalized Korteweg-DeVries Equations
We study the class of generalized Korteweg-DeVries equations derivable from the Lagrangian: L(l, p) = ∫ ( 1 2φxφt − (φx) l(l−1) + α(φx) (φxx) 2 ) dx, where the usual fields u(x, t) of the generalized KdV equation are defined by u(x, t) = φx(x, t). This class contains compactons, which are solitary waves with compact support, and when l = p + 2, these solutions have the feature that their width ...
متن کامل